HomeArticlesThe Future Satellite soil maps, mini-robot sprayers, and sensors that let soil speak straight to the farmer. Could precision farming help to feed our future without disrupting the environment? By 2050, there will be an extra two billion people on the planet, bringing the total to almost 10 billion.1 To feed the masses, the planet must produce ‘more food in the next four decades than all farmers in history have harvested over the past 8,000 years’.2 There have been huge boosts in crop production before. Between 1961 and 2014, only 16 percent more land was used for cereals, but global cereal production increased by 280 percent.3 That’s thanks to intensive farming practices, fertilisers, pesticides, herbicides, mechanisation, and crop breeding. But these methods have their limitations.It may be time for a new form of farming, known as precision farming. Discover why producing more food doesn't mean less global hungerWhat is Precision Farming?Precision farming is an approach to make farming more accurate and controlled. Information technology and specialised equipment, like remote-sensing devices, are used to collect and manage site-specific data. Farmers can then make optimal farming decisions about growing conditions, livestock, or crop treatment. In essence, technology is used to target farming practices more wisely. Here’s what it could do in agriculture:1. Replacing huge machines with small robotsCrop fields have gotten bigger, and so have the machines that tend them. In the 1980s most US farms had less than 600 crop acres, yet in 2014 most farms have at least 1,100 acres, and many farms are five to 10 times that size.15 But, heavy tractors passing overhead – up to 31 tonnes - compact the soil, squeezing out water and air. Compacted soil can make it difficult for plant roots to grow, reducing crop yields from 10 to 60 per cent.4 Start-up companies such as the Small Robot Company in the UK are developing small, light robots to carry out the work of heavy machinery.5 At around 250 kilograms, they tread lightly and will test soil, fertilise, weed, and plant – one robot could cover a 20-hectare field in a day or a whole farm in around two weeks. Farmers will be able to hire the robots from 2021.Find out why we shifted from mixed farms to monocultures and mega-tractors2. Localise pesticide and fertiliser sprayingIf you cut your finger, you probably wouldn’t take a bath of antiseptic. Yet farmers may drench entire crop fields with herbicide if they find just a few weeds to stop their spread. This is wasteful, and chemical runoff also enters the surrounding natural environment. Additionally, a report by Goldman Sachs found 40 per cent of farms are overfertilised.14In precision farming, a robot’s camera detects the shape of weeds in a crop field and delivers tailored doses of herbicide. Sensors can also measure how much light a plant reflects – this shows how much nitrogen it has taken up. If it looks low, the robot will dose it with fertiliser. Discover how chemical fertilisers are feeding the world - for good and bad.3. Soil MappingFarmers create physical maps of the types of soil across their farms. But mapping can be scaled up beyond individual farms. Launched this year, the first UK-wide soil map aims to cut the costs of soil mapping in half.9 While Belarusian company OneSoil aims even further - producing digital, interactive maps to show global crop farming trends and markets, using AI to analyse satellite imagery.104. Low-tech, low-barrier solutionsPrecision farming doesn’t have to mean buying the latest tech for farming. Farmers in low-income countries can access vital information from precision farming platforms using mobile phones. Examples include Kurima Mari, an app for farmers providing information on weather conditions and market updates in Zimbabwe, and Precision Agriculture for Development, which sends tailored advice to farmers in western Kenya via text message.11, 12Precision Farming in the NetherlandsJacob van den Borne, or ‘The Pope of potatoes’, proves that precision farming is more than just a theory; it’s economically viable. Since 2006, he has been running his Netherlands-based potato farm using precision technology.6 Since opting for precision tech, he has reduced consumption of water, fertilisers, pesticides and diesel, while boosting yield by one percent each year.7 Whereas most farmers dig up soil samples to measure soil chemistry and moisture, Van den Borne uses soil probes and sensors that transmit real-time data.He plans planting, spraying and harvesting using a combination of GPS and ground sensors, called RTK-GPS, which can plot automatic driving routes for tractors to an accuracy of one cm.8 He is also investigating how to use drones in agriculture and has created his experimental drone airport. Perhaps another nickname, “the Elon Musk of potatoes,” would bemore apt.Does precision farming work?Projected figures for the market value of precision farming - approximately 5.09 million U.S. dollars in 2018 to 9.53 billion U.S. dollars by 2023 - look enthusiastic.13 A 2016 report stated yield could be increased by 70 per cent – almost the exact amount required to feed the projected population of 2050.14 But it will take a while to change longstanding farming practices, and farmers are wary of purchasing equipment which may not be used. Likewise, engineers want to build robots that are widely usable rather than specialised robots for a specific crop.Precision farming requires a lot of data to be sent and received. So, if you’ve ever wandered through a field, waving your phone in vain for a mobile signal, you may guess poor connectivity across rural areas could still be a barrier. Finally, even with an increasing abundance of satellites, ground sensors and robotics, all the data is pretty useless unless it can be calculated with an appropriate AI and pulled together into one usable platform. Only this will give farmers more power to make successful decisions.
References Global Agricultural Productivity Report. Global Harvest Initiative. Accessed 10 September 2019. This Tiny Country Feeds The World. National Geographic. Accessed 10 September 2019. Smart farming: How IoT, robotics, and AI are tackling one of the biggest problems of the century. Techrepublic. Accessed 10 September 2019 Soil Compaction. University of Minnesota. Accessed 13 September 2019. Smart farming: How IoT, robotics, and AI are tackling one of the biggest problems of the century. Techrepublic. Accessed 10 September 2019 This Dutch Farmer is the Elon Musk of Potatoes. The Next Web. Accessed 14 September 2019. Smart Precision Farming. Watify - European Commission. Accessed 15 September 2019. What is GNSS – van den borne Aardappelen. Accessed 15 September 2019 Affordable precision soil map takes off following UK agri-tech partnership. Accessed 10 September 2019. OneSoil. Accessed 10 September 2019. The Kurima Mari app. Techzim. Accessed 15 September 2019. Technology hope for African Farmers. Financial Times. Accessed 15 September 2019. Precision Farming Market worth $10.23 Billion By 2025. Grand View Research. Accessed 12 September 2019. Precision Farming – Cheating Malthus With Digital Agriculture. Goldman Sachs. Accessed 12 September 2019. Farm Size and the Organization of US Crop Farming. United States Department of Agriculture. Accessed 9 October 2019. See MoreSee Less